3.184 \(\int \frac{\cos ^{\frac{3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=109 \[ \frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{\sin (c+d x) \sqrt{\cos (c+d x)}}{a^2 d (\cos (c+d x)+1)}-\frac{\sin (c+d x) \sqrt{\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2} \]

[Out]

-(EllipticE[(c + d*x)/2, 2]/(a^2*d)) + (2*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + (Sqrt[Cos[c + d*x]]*Sin[c + d
*x])/(a^2*d*(1 + Cos[c + d*x])) - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

________________________________________________________________________________________

Rubi [A]  time = 0.187834, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2765, 2978, 2748, 2641, 2639} \[ \frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{\sin (c+d x) \sqrt{\cos (c+d x)}}{a^2 d (\cos (c+d x)+1)}-\frac{\sin (c+d x) \sqrt{\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

-(EllipticE[(c + d*x)/2, 2]/(a^2*d)) + (2*EllipticF[(c + d*x)/2, 2])/(3*a^2*d) + (Sqrt[Cos[c + d*x]]*Sin[c + d
*x])/(a^2*d*(1 + Cos[c + d*x])) - (Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d*(a + a*Cos[c + d*x])^2)

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{3}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx &=-\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{\int \frac{\frac{a}{2}-\frac{5}{2} a \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))} \, dx}{3 a^2}\\ &=\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}-\frac{\int \frac{-a^2+\frac{3}{2} a^2 \cos (c+d x)}{\sqrt{\cos (c+d x)}} \, dx}{3 a^4}\\ &=\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}+\frac{\int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 a^2}-\frac{\int \sqrt{\cos (c+d x)} \, dx}{2 a^2}\\ &=-\frac{E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^2 d}+\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{a^2 d (1+\cos (c+d x))}-\frac{\sqrt{\cos (c+d x)} \sin (c+d x)}{3 d (a+a \cos (c+d x))^2}\\ \end{align*}

Mathematica [C]  time = 6.30429, size = 640, normalized size = 5.87 \[ -\frac{4 \csc \left (\frac{c}{2}\right ) \sec \left (\frac{c}{2}\right ) \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \sqrt{1-\sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin (c) \left (-\sqrt{\cot ^2(c)+1}\right ) \sin \left (d x-\tan ^{-1}(\cot (c))\right )} \sqrt{\sin \left (d x-\tan ^{-1}(\cot (c))\right )+1} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )}{3 d \sqrt{\cot ^2(c)+1} (a \cos (c+d x)+a)^2}-\frac{i \csc \left (\frac{c}{2}\right ) \sec \left (\frac{c}{2}\right ) \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (\frac{2 e^{2 i d x} \sqrt{e^{-i d x} \left (2 i \sin (c) \left (-1+e^{2 i d x}\right )+2 \cos (c) \left (1+e^{2 i d x}\right )\right )} \sqrt{i \sin (2 c) e^{2 i d x}+\cos (2 c) e^{2 i d x}+1} \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{3}{4},\frac{7}{4},-e^{2 i d x} (\cos (c)+i \sin (c))^2\right )}{3 i d \cos (c) \left (1+e^{2 i d x}\right )-3 d \sin (c) \left (-1+e^{2 i d x}\right )}-\frac{2 \sqrt{e^{-i d x} \left (2 i \sin (c) \left (-1+e^{2 i d x}\right )+2 \cos (c) \left (1+e^{2 i d x}\right )\right )} \sqrt{i \sin (2 c) e^{2 i d x}+\cos (2 c) e^{2 i d x}+1} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i d x} (\cos (c)+i \sin (c))^2\right )}{d \sin (c) \left (-1+e^{2 i d x}\right )-i d \cos (c) \left (1+e^{2 i d x}\right )}\right )}{2 (a \cos (c+d x)+a)^2}+\frac{\sqrt{\cos (c+d x)} \cos ^4\left (\frac{c}{2}+\frac{d x}{2}\right ) \left (-\frac{2 \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec ^3\left (\frac{c}{2}+\frac{d x}{2}\right )}{3 d}-\frac{2 \tan \left (\frac{c}{2}\right ) \sec ^2\left (\frac{c}{2}+\frac{d x}{2}\right )}{3 d}+\frac{4 \sec \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec \left (\frac{c}{2}+\frac{d x}{2}\right )}{d}+\frac{4 \csc (c)}{d}\right )}{(a \cos (c+d x)+a)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

((-I/2)*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*Sec[c/2]*((2*E^((2*I)*d*x)*Hypergeometric2F1[1/2, 3/4, 7/4, -(E^((2*I)*d
*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]
*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I*E^((2*I)*d*x)*Sin[2*c]])/((3*I)*d*(1 + E^((2*I)*d*x))*Cos[c] - 3*d*(-1 +
E^((2*I)*d*x))*Sin[c]) - (2*Hypergeometric2F1[-1/4, 1/2, 3/4, -(E^((2*I)*d*x)*(Cos[c] + I*Sin[c])^2)]*Sqrt[(2*
(1 + E^((2*I)*d*x))*Cos[c] + (2*I)*(-1 + E^((2*I)*d*x))*Sin[c])/E^(I*d*x)]*Sqrt[1 + E^((2*I)*d*x)*Cos[2*c] + I
*E^((2*I)*d*x)*Sin[2*c]])/((-I)*d*(1 + E^((2*I)*d*x))*Cos[c] + d*(-1 + E^((2*I)*d*x))*Sin[c])))/(a + a*Cos[c +
 d*x])^2 - (4*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*
Sec[c/2]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*
x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*(a + a*Cos[c + d*x])^2*Sqrt[1 + Cot[c]^2]) + (
Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*((4*Csc[c])/d + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/d - (2*Se
c[c/2]*Sec[c/2 + (d*x)/2]^3*Sin[(d*x)/2])/(3*d) - (2*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/(a + a*Cos[c + d*x
])^2

________________________________________________________________________________________

Maple [A]  time = 2.409, size = 257, normalized size = 2.4 \begin{align*} -{\frac{1}{6\,{a}^{2}d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 12\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+4\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+6\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1} \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) -20\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+9\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-3} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^2,x)

[Out]

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2*d*x+1/2*c)^6+4*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3+6*(sin(1/2
*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/
2))-20*cos(1/2*d*x+1/2*c)^4+9*cos(1/2*d*x+1/2*c)^2-1)/a^2/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
/cos(1/2*d*x+1/2*c)^3/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\cos \left (d x + c\right )^{\frac{3}{2}}}{a^{2} \cos \left (d x + c\right )^{2} + 2 \, a^{2} \cos \left (d x + c\right ) + a^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^(3/2)/(a^2*cos(d*x + c)^2 + 2*a^2*cos(d*x + c) + a^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^2, x)